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in Gill et al. [3], where both finite difference and pseudo-
spectral methods were used to solve a nondivergent baro-The rate of convergence of the pseudospectral approximation to

singular linear differential eigenproblems is asymptotically geomet- tropic model of tropical cyclones for various velocity pro-
ric, but is often seriously weakened by the presence of singularities, files. Both methods became increasingly inaccurate at the
called critical points or critical latitudes. One remedy is to implement upper limit of unstable wavenumbers where the criticalan independent variable transformation which distorts the computa-

points approach the computational domain. This problemtional domain into the complex plane and away from the critical
does not arise at the lower limit of unstable wavenumberspoint. These complex maps can then be chosen to minimize the

effect of the critical points. However, the degree of improvement is because as the wave speed approaches zero, the critical
limited for critical points near a boundary point, since each contour point does not approach the real axis (for example, see [1]).
produced by the complex maps must terminate there to enforce

The use of complex maps as a remedy to this problemthe boundary conditions. In this paper, new complex maps are
was initially suggested by Boyd and Christidis [4]. Thedeveloped for problems containing a single near-boundary critical

point. These new composite complex maps are polynomials of de- complex map is an independent variable transformation
gree 2p, where p $ 1 is the level of composition. Formulae for the which distorts the computational domain into one in the
optimal map parameters are deduced analytically and indicate that complex plane, so that the effect of the singularities on
significant acceleration of the geometric rate of convergence is pos-

the rate of convergence of the numerical schemes is mini-sible. A test problem is solved to illustrate the technique. Although
mized. Its use was investigated in some detail by Boyd [5]successful, it is shown that previously ignored algebraic factors in

the formula for the error may become significant when utilizing and subsequently by Gill and Sneddon. While it has been
composite complex maps. Q 1996 Academic Press, Inc. demonstrated that the use of complex maps can improve

the convergence of pseudospectral methods substantially,
the theoretical results also implied that the improvement

1. INTRODUCTION is limited for critical points located near a boundary point
of the computational domain. This is a consequence of theIn a recent paper by Gill and Sneddon [1] the role of
requirement that the complex contour produced by thecomplex maps in using pseudospectral methods to solve
map must terminate at these boundary points so that thesingular differential eigenproblems was explored. Such
boundary conditions can be enforced in the numerical ap-equations frequently arise in linear, inviscid, hydrodynamic
proximation. This requirement restricts the extent to whichstability calculations among others [2]. Singularities (often
the complex contour can avoid the given critical points.called critical points or critical latitudes) occur when the

This paper extends the work of [1] by investigating thecoefficient of the highest derivative vanishes. If this coeffi-
possibility of taking successive complex maps to improvecient is not a one-to-one function of the independent vari-
the accuracy even further. Since the gains from using aable, there may be several distinct singularities and their
single complex map are usually quite substantial, this ap-location may not be confined to the real axis.
proach is likely to be of most benefit in the case of near-The importance of these critical points (to the numerical
boundary critical points. The prototype differential equa-analyst) is that their location, relative to the computational
tion considered is a second-order, linear, two point bound-domain, determines the asymptotic rate of convergence of
ary value problem on the interval [21, 1] containing athe numerical scheme employed. Roughly speaking, the
single critical point near one of the end points. The pseudo-closer the singularities are, the slower the convergence will
spectral method is outlined briefly in Section 2, togetherbe, and for singularities on the computational domain the
with the determination of its rate of convergence. The usenumerical approximations diverge. This was demonstrated
of complex maps (in particular, the quadratic map) with
pseudospectral methods is also described. In Section 3, a1 Current address: Department of Applied Mathematics, University of

Adelaide, Adelaide, South Australia 5005, Australia. new family of maps, called composite maps, is developed
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2 GILL AND SNEDDON

for problems with near-boundary critical points. A test the series truncation error—the so-called ‘‘assumption of
equal errors’’ [7]. The calculation of the series truncationproblem is solved in Section 4 and some conclusions about

the effectiveness of these new composite maps are made error is not straightforward either. However, its asymptotic
value depends primarily on the location of the singularitiesin Section 5.
of the solution u(y), which can often be determined by
inspection of the differential equation.2. PSEUDOSPECTRAL METHODS

For a truncated Chebyshev expansion of the form
The prototype eigenproblem considered in [1] was the

linear (second-order) ordinary differential equation
u(y) P uN(y) 5 ON

j50
aj Tj (y),

a2(y, l)u0(y) 1 a1(y, l)u9(y) 1 a0(y, l)u(y) 5 0, (1)

where Tj (y) 5 cos( j cos21 y), the series truncation error
subject to homogeneous Dirichlet boundary conditions satisfies ES (y) 5 O(uaNu) as N R y. Thus the rate of

convergence is governed by the behavior of the last re-
u(21) 5 u(1) 5 0. (2) tained Chebyshev coefficient. Convergence is said to be

geometric, since it can be shown that aN 5 O(Nkd2N),
Here y [ [21, 1] is the real independent variable and l where d $ 1 is a constant that depends on the location
and u(y) are the eigenvalue and eigenfunction, respec- of the nearest singularity [9]. The algebraic factor, which
tively. The coefficients ai (y, l) are known functions of y depends on the nature of this singularity, is often ignored,
and can depend linearly on the eigenvalue l. Extensions for as the exponential term will dominate for large values of
higher order derivatives and Neumann or mixed boundary N. The Chebyshev series (and the related pseudospectral
conditions are straightforward. method) converges inside the largest ellipse with foci at

In the pseudospectral method the unknown eigenfunc- 61 that does not contain any singularities. The constant d
tion in (1) is approximated by a weighted sum of N trial is equal to the sum of the lengths of the semi-major and
functions hfj (y)j, i.e., semi-minor axes of this ellipse, or in terms of the singulari-

ties yc of u(y),

u(y) P uN (y) 5 ON
j51

aj fj (y). (3)
d 5 d(yc) 5 min

yc

hmax huyc 6 Ïy2
c 2 1ujj. (4)

The expansion coefficients hajj are determined by requiring
Complex Maps

that uN(y) satisfy Eq. (1) at a set of nodes hyij and that
the boundary conditions (2) are satisfied. It is common to The differential equation (1) and eigenfunction u(y)

possess a regular singular point, or critical point, at thechoose the trial functions to be orthogonal polynomials
such as the Chebyshev polynomials of the first kind. In real or complex point yc satisfying a2(yc, l) 5 0. The rate

of convergence of the pseudospectral solution is deter-practice, however, an expansion in Lagrange polynomials
based on the nodes hyij is often simplest. Also, the nodes mined by the location of this critical point through (4). If

it is near the interval [21, 1], the constant d decreasesare usually chosen to be the zeros of an (N 2 2)th-degree
orthogonal polynomial together with y1 5 21 and yN 5 1. significantly and convergence becomes very slow. How-

ever, if the computational domain is shifted to a contourConvergence results for the pseudospectral method can
be obtained by considering Chebyshev polynomial expan- in the complex y-plane, away from the critical point, then

one could expect the rate of convergence to be improved.sions (Solomonoff and Turkel [6], Boyd [7]). Similar results
are available for methods based on Lagrange polynomials This can be achieved by a complex map y 5 f(x), where

x [ [21, 1] is the new (real) independent variable and f(see, for example, Krylov [8]). Errors in the pseudospectral
solution of the system (1) and (2) are generated from two is a complex function. The map f(x) must satisfy f(61) 5

61 so that the complex contour will pass through thesources. First, there is the series truncation error due to
the fact that terms for which j . N have been neglected boundary points at which the boundary conditions are to

be enforced. Details of the transformation are given in [1].in the expansion (3). Second, there is the discretization
error—viz. the difference between the first N terms of the The advantage of this approach is that the transformed

differential equation (and eigenfunction) will be singularexact solution and the corresponding terms calculated by
the pseudospectral solution of (1) and (2). Unfortunately, at xc 5 f 21(yc), which, with an appropriate choice of map,

may yield a larger value of d. The disadvantage is that thethe discretization error is difficult to compute a priori.
Empirical evidence supports the notion that the discretiza- eigenfunction to the original problem is lost. The solution

along the complex contour (u[ f(x)]) cannot be used totion error is roughly of the same order of magnitude as
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TABLE Igenerate the solution along the real y-axis. However, for
many problems in mathematical physics it is the eigenvalue Optimal Quadratic Map Results for a Single Real Critical Point
which is of primary interest, and so this difficulty may

yc Pr Pim dnot arise.

0.0 0.000 20.500 2.414The Quadratic Map
0.2 0.100 20.490 2.397
0.4 0.200 20.458 2.342The simplest polynomial complex map which avoids a
0.6 0.300 20.400 2.236single critical point is the quadratic map
0.8 0.400 20.300 2.040
0.90 0.450 20.218 1.859

y 5 f(x) 5 x 2 P(x2 2 1), (5) 0.95 0.475 20.156 1.704
0.99 0.495 20.070 1.444

where P 5 Pr 1 iPim is the map parameter. This map
was first investigated by Boyd [5] and is the most general
quadratic map with fixed points at 61. In the case of a single

half-plane, the optimal P and d values are presented incritical point yc, the transformed differential equation is
Table I for various locations of the critical point. Quitesingular at
large d values are obtained when the critical point is near
the center of the interval [21, 1], but these decrease mark-
edly for near-boundary critical points. This is a result ofxc 5 x6 5

1 6 Ï1 2 4Pyc 1 4P2

2P
.

the requirement that the new contour passes through the
end-points so that the boundary conditions may be applied.

That is, the transformed problem has, in general, two dis- It is this latter type of singularity that is of particular inter-
tinct critical points. The error in the pseudospectral ap- est in this paper.
proximation to the solution is again geometric, but with d
given by d 5 min hd(x6)j. The parameter P should be cho- 3. COMPOSITE MAPS
sen to maximize this value of d. Gill and Sneddon showed
that this can be done by choosing P 5 POPT, where For those cases where the improvement in d is not great,

or perhaps even when it is, another complex map could
be applied to the transformed problem, treating it as the

POPT [yc] 5
yc 6 Ïy2

c 2 1
2

(6) original problem. This could be achieved with x 5 g(z),
where g is a complex map so that now y 5 f n g(z) 5
f [g(z)] and d(zc) . d(xc). One could envisage applyingand the sign is chosen so that the contour avoids the branch
several such complex maps to increase d indefinitely. How-cut associated with yc. With this optimum value of P, the
ever, in general there are two main drawbacks to this. First,two critical points coalesce, leaving x1 5 x2 5 1/(2POPT)
for problems with more than one critical point, the numberand
of transformed critical points grows rapidly with the level
of composition. This in turn can increase the degree of the
individual polynomial maps needed at each stage. Second,d(xc) 5 max HU1 6 Ï1 2 4P2

OPT[yc]
2POPT[yc]

UJ.
the calculations needed to carry out each transformation
soon become very tedious. In the case of a single critical

There are two comments to be made about this simple point, however, these difficulties do not arise since the
result. First, in obtaining the result it was necessary to optimal quadratic map yields a single transformed critical
ignore the algebraic factor in the error term. This means point at each stage. Also, explicit formulae can be gener-
that it is an asymptotic result and may not be applicable ated for composite quadratic complex maps in that case.
for all N. However, to extend the analysis to all N (to find For the optimal quadratic map with P given by (6),
POPT [yc, N ]) would be impractical. Second, the locations
of the critical points may not be known a priori since they y 5 x 2 POPT [yc](x2 2 1)

(7)can depend on the unknown eigenvalue. In such cases it
5 yc 2 POPT[yc](x 2 xc)2,may be possible to obtain an approximate value by other

means. For example, if the problem is to be solved for a
where the single transformed critical point is given byrange of parameter values (such as the wavenumber), a

‘‘continuation’’ approach may be used, as described in
[1, p. 22]. xc 5

1
2POPT[yc]

.
For a real critical point with a banch cut in the upper
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If the optimal quadratic map is similarly applied for x 5
g(z), then

x 5 xc 2 POPT[xc](z 2 zc)2, (8)

where now

POPT[xc] 5
xc 6 Ïx2

c 2 1
2

, zc 5
1

2POPT[xc]

and

d(zc) 5 max HU1 6 Ï1 2 4P2
OPT[xc]

2POPT[xc]
UJ.

FIG. 1. Optimal contours in the complex y-plane generated by the
one, two, and three level composite quadratic complex maps for a single
critical point yc 5 0.99.Substituting (8) into (7) yields the two-level composite map

y 5 yc 2 POPT[yc]P2
OPT[xc](z 2 zc)4.

summarizes the results for the application of one, two and
three level composite quadratic maps, and Fig. 1 illustratesThis result easily generalizes to the p level composite map
the contours generated by these maps. Note that the one
level map is the quadratic map and that the application ofy 5 fp(x) 5 yc 2 P(x 2 x(p)

c )2p
, p $ 1, (9)

the higher degree composite maps has the desired effect
of ‘‘pushing’’ the transformed critical point even furtherwhere
from the interval [21, 1]. With N 5 10 terms in the pseudo-
spectral approximation, the error with the quadratic map

P 5 p
p

j51

P2 j21

j , Pj 5
x( j21)

c 6 Ï(x( j21)
c )2 2 1

2
, j 5 1, ..., p, should in theory be roughly 1.444210 p 1022, or 1%. With

the same discretization, the errors for the two and three
level maps should be roughly 1024 and 1027, which are

and significant improvements indeed. It can also be shown that
for large values of p, the value of d approximately doubles
at each level. In view of this, the potential of these compos-x( j)

c 5
1

2Pj
, x(0)

c 5 yc.
ite maps for single critical points (whether they are near
a boundary or not) appears to be considerable. However,

The resulting value of d is it will be shown that, in practice, this is not always the case
and one may have to be content with the improvement
obtained in using the quadratic map.d(x(p)

c ) 5 max HU1 6 Ï1 2 4P2
p

2Pp
UJ.

It should also be noted that the maps (9) can be seen as
special cases of the family of higher degree maps given by

To illustrate the potential benefits of these maps, con-
y 5 yc 2 P(x 2 xc)2nsider the case of a single critical point yc 5 0.99. Table II

for integer values of n. The values of P and xc can be found
from the requirement that y(61) 5 61. Higher degreeTABLE II
maps were also considered in [1] but for a different pur-

Composite Quadratic Map Results for a Single Critical Point pose. In that paper, the increased number of disposable
at yc 5 0.99

map parameters allowed a greater increase in the maxi-
mum value of d, particularly when there was more than onep Pp x(p)

c d(x(p)
c )

critical point. The advantage with the composite quadratic
0 0 0.99 1.00 maps for problems with a single critical point is that no
1 0.495 2 0.071i 0.990 1 0.141i 1.444 optimization of d needs to be performed manually. The
2 0.321 2 0.130i 1.338 1 0.542i 2.663

optimal map parameters are given by explicit, analytic ex-3 0.165 2 0.089i 2.346 1 1.262i 5.230
pressions.
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4. TEST PROBLEM

The pseudospectral method, combined with the compos-
ite quadratic maps, is used to solve the problem

(y 2 yc)2u0(y) 1 [1 2 l(y 2 yc)2]u(y) 5 0, (10)

subject to

u(21) 5 u(1) 5 0, (11)

where yc is the single critical point and l is the eigenvalue FIG. 2. Convergence of the one, two, and three level composite qua-
dratic maps combined with the pseudospectral method for (10) and (11).sought. Since our interest is in problems with near-bound-
Plotted are the relative errors (in logscale) as functions of N 2 2.ary critical points, consider the above problem with yc 5

0.99. Equation (10) is actually a generalization of a problem
considered in [1]. The analytic solution is known and the

(N 2 2) for various values of N in Fig. 2. Approximatesolution satisfying (11) is
geometric convergence is obtained with all three maps.
The application of the two level composite map with the
pseudospectral method yielded a much faster rate of con-u(y) 5 BÏy 2 yc hJiÏ3/2 [iÏl(y 2 yc)]

(12) vergence, as suggested by the larger theoretical d value in
1 cJ2iÏ3/2 [iÏl(y 2 yc)]j, Table II. However, the three level map did not perform

as well as the two level map, but produced relative errors
between those of the one and two level maps. This iswhere B is an arbitrary constant. In Eq. (12), Jn(y) is the
contrary to the theoretical results anticipated from TableBessel function of the first kind of order n, the constant c
II and requires further investigation.is given by

The result that E p d2N is an asymptotic result and so
it may not be indicative of the error for small to moderate
N. Since the results for the two and three level maps alreadyc 5

JiÏ3/2 [iÏl(1 2 yc)]

J2iÏ3/2 [iÏl(1 2 yc)]
,

appear to be affected by round-off, it is not practical to
check this by solving the problem with larger values of N.
However, an alternative approach may be taken since the

and l is a solution of eigenfunction is known analytically.
The series truncation error in an N term pseudospectral

solution to a differential equation is of the order of theJiÏ3/2 [iÏl(1 2 yc)]J2iÏ3/2 [iÏl(21 2 yc)]
last retained coefficient of the Chebyshev series approxi-
mation to the eigenfunction—i.e., ES 5 O(uaNu). Here, the2 JiÏ3/2 [iÏl(21 2 yc)]J2iÏ3/2 [iÏl(1 2 yc)] 5 0.

(13)

eigenfunction is the transformation of (12) under the map
(9) for the three composite maps given in Table II. The

The algebraic package Mathematica can be used to calcu- high precision available in Mathematica can be used to
late the eigenvalue of smallest magnitude by solving the calculate uaNu for any value of N. A plot of uaNu versus
transcendental equation (13). To 16 decimal places this is N 2 2 for each composite map should then reflect the

convergence observed in Fig. 2, but without the influence
of round-off errors. The results are given in Fig. 3 and arel1 5 21.1901285054724449 2 1.6418523354678106i.
consistent with the results of Fig. 2 for N , 25. However,
for N 2 2 $ 65 the three level composite map does produce
Chebyshev coefficients with magnitude less than those pro-The method was coded in Fortran 77 and run on an

RS6000 workstation employing double precision arithme- duced by the two level composite map, as expected from
the theoretical (asymptotic) results. However, the modulustic. The generalized matrix eigenproblem which results was

solved using the IMSL routine DGVLCG. The relative of the Chebyshev coefficients (and therefore the relative
errors) at this ‘‘cross-over’’ point are of the order of 10230.errors in l1 obtained by the pseudospectral method with

these composite maps are plotted against the matrix size In practice this accuracy is rarely sought or achieved on
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109. The composite map will be beneficial only if the in-
crease in d is sufficient to overcome the increase in the
algebraic factor.

In this case, a rough test can be constructed to determine
what level of composition should be used. For a given
discretization, N 5 N*, a p level composite map will be
an improvement over the (p 2 1) level map only if Ep ,
Ep21. Using (14) this leads to the requirement that

S dp

dp21
DN*

. N 2p21

* .

If dp/dp21 is given its limiting value of 2, we need N* .
FIG. 3. Magnitude of the exact Chebyshev coefficients as functions

2p21 log2 N* orof N 2 2 of the transformed eigenfunction (12) under the one, two, and
three level composite quadratic maps.

p , 1 1 log2 N* 2 log2(log2 N*)

finite precision computers (as evident in Fig. 2). These for the p level map to be an improvement. This suggests
results highlight that, while the asymptotic theory may be that the three level map will be unsuitable for N # 15 and
used as a guide, in practice the values of N for which the the four level map will be unsuitable for N # 40. This
theory is valid may be too large or imply the error is far simple analysis indicates that, for finite values of N, alge-
smaller than normally required. braic factors will play a role in determining the effective-

A likely explanation for the discrepancy between experi- ness of composite quadratic maps.
ment and the predictions of Table II for moderate values
of N is that Table II does not include the effects of the

5. CONCLUSIONSalgebraic factors in the formula for the error. These factors
are often omitted on the basis that the geometrically de-

In this paper the numerical solution of singular, second-creasing factor dominates as N R y. Also this simplifica-
order linear differential eigenproblems by pseudospectraltion is needed in order to obtain formulae such as (6) for
methods was considered. In particular, the case of a singlethe optimal map parameters. In practice, however, a finite
critical point near an endpoint of the (finite) computationalvalue of N is used and it may be the case that previously
domain was investigated. Such situations are often fataldiscarded algebraic factors have some influence on the rate
for standard numerical techniques and the improvementof convergence.
that a quadratic complex map produces can also be limited.These ideas can be confirmed by considering the Cheby-

Composite complex maps offer a means of overcomingshev expansion of the transformation of a known function
this problem. While the theoretical results indicated sig-such as u(y) 5 (y 2 yc)21 which has a simple pole at
nificant improvements in the rate of convergence of the

y 5 yc. Under the composite map (9), the function to be
numerical method, in practice only partial success resulted.approximated is
The discrepancy was a result of neglecting algebraic factors
in the formula for the error in order to obtain simple
expressions for the optimum map parameters. Despite this,v(x) ; u[ fp(x)] 5

21
P(x 2 x(p)

c )2p ,
a measurable degree of improvement was obtained for the
test problem. The two level composite quadratic map was

which has a pole of order 2p at x(p)
c 5 f 21

p (yc). The Cheby- significantly more accurate than the quadratic map. For
shev coefficients for v(x) are given in closed form in Elliot example, with N 5 10, the composite map was 1000 times
[10]. It follows that, since E p uaNu as N R y, more accurate.

One disadvantage with composite complex maps is that
Ep p N2p

21[d(x(p)
c )]2N as N R y, (14) they may be difficult to implement in the case of multiple

critical points. The optimal map parameters cannot be pro-
vided explicitly, and the degree of the map at each levelwhere p is the level of composition. The increase in the

order of the pole to 2p is reflected in the algebraic factor of composition can grow rapidly. Even so, the results for
a single critical point provide a useful insight into the prop-N 2p

21 in the expression for the error. For example, with
p 5 3 and N 5 20, the algebraic factor is of the order of erties of complex mapping methods.
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